

Enabling Energy Transition in Africa from a Policy Perspective:

What are the determining socio-economic factors?

SDEWES 2020

Presentation funded by: Solarenergieförderverein Bayern e.V.

Hajer Ben Charrada

Bavarian School of Public Policy Technical University of Munich, Munich, Germany

E-mail: hajer.ben-charrada@tum.de

1 Motivation

- 2 Research Question & Hypotheses
- 3 Data & Methods
- 4 Results & Discussion

1 Motivation

2 Research Question & Hypotheses

3 Data & Methods

4 Results & Discussion

From a development perspective, renewable energy in Africa has many synergies with the SDGs

SDEWES 2020 - Hajer Ben Charrada

Africa has the lowest electricity production in the world and it is expected to grow

Electricity production mix in world regions in 2017

OECD

Americas

OECD

Asia Oceania

OECD

Europe

Non-OECD

Europe and

Eurasia

region

Comments

 Lowest value of electricity production in Africa → expected growth potential
Main sources of energy in Africa are coal, natural gas and hydro
Share of renewable

energy in Africa in 2017 amounts to **18.5%**

Source: International Energy Agency (2017), own visualization

Non-OECD

Americas

SDEWES 2020 - Hajer Ben Charrada

Africa

0-

1 Motivation

- 2 Research Question & Hypotheses
- 3 Data & Methods
- 4 Results & Discussion

Hence the research question...

What are the drivers of renewable energy deployment in African countries from a socio-economic and policy perspective?

Six hypotheses along three categories developed

Research hypotheses

1 Motivation

- 2 Research Question & Hypotheses
- 3 Data & Methods
- 4 Results & Discussion

Hypotheses are tested via a linear regression model

Dependent variable:

Hydro/ Non-hydro renewable energy production per capita

Independent variables:

Residual

- **H**_{Pol1}: Democracy index
- H_{Pol2}: Public institution efficiency index
- **H**_{Econ1}: Domestic savings
- H_{Econ2}: Foreign Direct Investments
- **H**_{Econ3}: Received aids
- H_{struc1}: Manufacturing value add

Two sets of dependent variables considered: Hydro and non-hydro renewables production per capita (1/2)

Selected visualization of the dependent variable: Hydro renewables per capita [kWh] (log scale)

SDEWES 2020 - Hajer Ben Charrada

Two sets of dependent variables considered: Hydro and non-hydro renewables production per capita (2/2)

Selected visualization of the dependent variable: Non-hydro renewables per capita [kWh] (log scale)

The different hypotheses are modeled by a set of independent variables (1/2)

Summary statistics and averaged values of the independent variables through the analyzed time scope

	Variable	Obs.	Mean	Std. Dev.	Range	
H _{Pol1}	Democracy	1973	-0.90 [-]	5.92 [-]	-10 – 10 [-]	
H _{Pol2}	Government efficiency	1013	0.74 [-]	0.63 [-]	-2.48 – 1.05 [-]	

Source: Marshall and Jaggers (2019), Kaufmann et al. (2010)

SDEWES 2020 - Hajer Ben Charrada

The different hypotheses are modeled by a set of independent variables (2/2)

Summary statistics and averaged values of the independent variables through the analyzed time scope

Source: World Bank (2019)

SDEWES 2020 - Hajer Ben Charrada

1 Motivation

2 Research Question & Hypotheses

3 Data & Methods

4 Results & Discussion

Hydro

Government efficiency and foreign investment are significantly correlated with hydro production

	Dependent variable: Hydro per capita						
	Model (1.1)	Model (1.2)	Model (1.3)	Model (1.4)	Model (1.5)	Model (1.6)	
Democracy	0.118	1.442			1.371	1.087	
Government efficiency		67.030***				104.197***	
Domestic savings			-1.316e-11***		-3.848e-12*	1.833e-12	
Foreign investment			8.737e-11***		8.975e-11***	8.975e-11***	
Aid			-6.758e-09		-8.156e-09	-2.306e-08**	
Manufacturing				-2.243e-11	-2.118e-11***	-2.118e-11***	
Hydro capability	0.075***	0.112***	0.125***	0.045*	0.120***	2.547**	
Constant	-1,126.630	-2,469.588	-2,401.626**	-387.328	-1,446.766	-4,879.355**	
Observations	1,469	719	1,242	1,198	1,082	609	
-							

Note: OLS with heteroskedasticity-robust standard errors. Time fixed effects are included but not shown.

*** significant at 1%, two tailed tests.

** significant at 5%, two tailed tests.

* significant at 10%, two tailed tests.

Results & Discussion

Democracy and government efficiency are significantly correlated with non-hydro renewables production

	Dependent variable: Non-hydro renewables per capita						
		Model (2.1)	Model (2.2)	Model (2.3)	Model (2.4)	Model (2.5)	Model (2.6)
H _{Pol1}	Democracy	1.296***	1.371***			1.732***	1.560***
H _{Pol2}	Government efficiency		29.018***				36.609***
H _{Econ1}	Domestic savings			-3.060e-13		-1.448e-12***	1.123e-12
H _{Econ2}	Foreign investment			-3.532e-12		-3.732e-12	-9.498e-12
H _{Econ3}	Aid			-2.871e-09**		-2.775e-09**	-4.870e-09**
H _{Struc1}	Manufacturing				-4.471e-13	1.430e-12**	-4.885e-12**
	Constant	-306.920***	-1,612.611***	-1,209.428***	-1,176.992***	-439.668**	-2,140.815***
	Observations	1,862	916	1,537	1,496	1,299	737
	Note: OLS with bateroskedasticity-robust standard errors. Time fixed effects are included but not shown						

*** significant at 1%, two tailed tests.

** significant at 5%, two tailed tests.

* significant at 10%, two tailed tests.

٠

٠

Key insights are synthesized from interviews

Political drivers

- Communities can be instrumental in influencing energy policy, given democracy
- Transparency and participatory decision-making are key in making good energy policies

There are **four main public institutions** which are responsible for a good implementation for energy policies: Ministry/department of energy, the parliament, the public utility, and the power regulator

Macroeconomic drivers

- Governments cannot afford the costs of renewable energy projects
- International capital is available, but it needs good guarantees to invest
- Favorable energy policies in place would reduce risks and attract capital

Structural drivers

• When the business opportunity is there, skill and know-how can be made available, but come with costs

Causal mechanism: Democracy as a driver of renewable energy

Results & Discussion

Causal mechanism:

Government efficiency as a driver of renewable energy

ΠП

1 Motivation

2 Research Question & Hypotheses

3 Data & Methods

4 Results & Discussion

ТΠ

Conclusion

Implications

- Democratic conditions and an efficient government do drive renewable energy development in Africa
- When energy policy is favorable for renewable energy, international capital will flow into RE projects in Africa

Policy recommendations

In order to drive renewable energy in Africa

- International organizations and development agencies should focus on:
 - Supporting democratic decision making and good governance
 - Building capacities in energy policy development
- Regional African bodies should focus on:
 - Enabling democracy
 - Sharing expertise and best practices in energy policy development and deployment